(x^3+x^2+x+1)(12x^2+12x-12)=0

Simple and best practice solution for (x^3+x^2+x+1)(12x^2+12x-12)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^3+x^2+x+1)(12x^2+12x-12)=0 equation:


Simplifying
(x3 + x2 + x + 1)(12x2 + 12x + -12) = 0

Reorder the terms:
(1 + x + x2 + x3)(12x2 + 12x + -12) = 0

Reorder the terms:
(1 + x + x2 + x3)(-12 + 12x + 12x2) = 0

Multiply (1 + x + x2 + x3) * (-12 + 12x + 12x2)
(1(-12 + 12x + 12x2) + x(-12 + 12x + 12x2) + x2(-12 + 12x + 12x2) + x3(-12 + 12x + 12x2)) = 0
((-12 * 1 + 12x * 1 + 12x2 * 1) + x(-12 + 12x + 12x2) + x2(-12 + 12x + 12x2) + x3(-12 + 12x + 12x2)) = 0
((-12 + 12x + 12x2) + x(-12 + 12x + 12x2) + x2(-12 + 12x + 12x2) + x3(-12 + 12x + 12x2)) = 0
(-12 + 12x + 12x2 + (-12 * x + 12x * x + 12x2 * x) + x2(-12 + 12x + 12x2) + x3(-12 + 12x + 12x2)) = 0
(-12 + 12x + 12x2 + (-12x + 12x2 + 12x3) + x2(-12 + 12x + 12x2) + x3(-12 + 12x + 12x2)) = 0
(-12 + 12x + 12x2 + -12x + 12x2 + 12x3 + (-12 * x2 + 12x * x2 + 12x2 * x2) + x3(-12 + 12x + 12x2)) = 0
(-12 + 12x + 12x2 + -12x + 12x2 + 12x3 + (-12x2 + 12x3 + 12x4) + x3(-12 + 12x + 12x2)) = 0
(-12 + 12x + 12x2 + -12x + 12x2 + 12x3 + -12x2 + 12x3 + 12x4 + (-12 * x3 + 12x * x3 + 12x2 * x3)) = 0
(-12 + 12x + 12x2 + -12x + 12x2 + 12x3 + -12x2 + 12x3 + 12x4 + (-12x3 + 12x4 + 12x5)) = 0

Reorder the terms:
(-12 + 12x + -12x + 12x2 + 12x2 + -12x2 + 12x3 + 12x3 + -12x3 + 12x4 + 12x4 + 12x5) = 0

Combine like terms: 12x + -12x = 0
(-12 + 0 + 12x2 + 12x2 + -12x2 + 12x3 + 12x3 + -12x3 + 12x4 + 12x4 + 12x5) = 0
(-12 + 12x2 + 12x2 + -12x2 + 12x3 + 12x3 + -12x3 + 12x4 + 12x4 + 12x5) = 0

Combine like terms: 12x2 + 12x2 = 24x2
(-12 + 24x2 + -12x2 + 12x3 + 12x3 + -12x3 + 12x4 + 12x4 + 12x5) = 0

Combine like terms: 24x2 + -12x2 = 12x2
(-12 + 12x2 + 12x3 + 12x3 + -12x3 + 12x4 + 12x4 + 12x5) = 0

Combine like terms: 12x3 + 12x3 = 24x3
(-12 + 12x2 + 24x3 + -12x3 + 12x4 + 12x4 + 12x5) = 0

Combine like terms: 24x3 + -12x3 = 12x3
(-12 + 12x2 + 12x3 + 12x4 + 12x4 + 12x5) = 0

Combine like terms: 12x4 + 12x4 = 24x4
(-12 + 12x2 + 12x3 + 24x4 + 12x5) = 0

Solving
-12 + 12x2 + 12x3 + 24x4 + 12x5 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), '12'.
12(-1 + x2 + x3 + 2x4 + x5) = 0

Ignore the factor 12.

Subproblem 1

Set the factor '(-1 + x2 + x3 + 2x4 + x5)' equal to zero and attempt to solve: Simplifying -1 + x2 + x3 + 2x4 + x5 = 0 Solving -1 + x2 + x3 + 2x4 + x5 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| t^2-12t-18=0 | | (10)2x-3=(10)3(4x-3) | | (x^3+1)(x-1)=0 | | 3.7x=20.72 | | -3(2x-8)+5=-6x+29 | | 12-2x=-4x+4 | | 8x-5/6=7/3 | | 6/18/8 | | (3x-8y)(x+3y)=0 | | x/9-6=78 | | log(x^2-4x)=1 | | 2(m-1)+3(3-2m)=-5(m+5)+9 | | 60(t-0.75)=-35t | | 0.46(0.75)+x(0.25)=0.5 | | X+1+2x-1=15 | | (3r-1)(4r+3)=0 | | 4(z+2)-(4+8z)=-5z | | x^2-y^2=.96x^2 | | 3(4x+1)=3x+12 | | ((3/14)/(7/12)) | | x^2-y^2=.36x^2 | | -220=-x | | 4x+20=-2x+56 | | 4(z+2)-(4+8z)=5z | | 5/7x-2/7=-3 | | 6x-30=-2x-86 | | 4(z+2)+(4+8z)=5z | | 3y=5(y)+11 | | 6-5(x+1)=16 | | 8z+5-5z=4+2z-5 | | -5(z-9)=-4z-1 | | (5w-8)(3+w)=0 |

Equations solver categories